Testing Ansible Roles with Test Kitchen

Recently while attending DevOps Days Austin 2015, I participated in a breakout session focused on how to test code for configuration management tools like Puppet, Chef, and Ansible. Having started to use Ansible to manage our infrastructure at Delphix I was searching for a way to automate the testing of our configuration management code across a variety of platforms, including Ubuntu, CentOS, RHEL, and Delphix’s custom Illumos-based OS, DelphixOS. Dealing with testing across all of those platforms is a seemingly daunting task to say the least!

Intro to Test Kitchen

The conversation in that breakout session introduced me to Test Kitchen (GitHub), a tool that I’ve been very impressed by and have had quite a bit of fun writing tests for. Test Kitchen is a tool for automated testing of configuration management code written for tools like Ansible. It automates the process of spinning up test VMs, running your configuration management tool against those VMs, executing verification tests against those VMs, and then tearing down the test VMs.

What’s makes Test Kitchen so powerful and useful is its modular design:

Using Test Kitchen

After learning about Test Kitchen at the DevOps Days conference, I did some more research and stumbled across the following presentation which was instrumental in getting started with Test Kitchen and Ansible: Testing Ansible Roles with Test Kitchen, Serverspec and RSpec (SlideShare).

In summary one needs to add three files to their Ansible role to begin using Test Kitchen:

  • A “.kitchen.yml” file at the top-level. This file describes:
    • The driver to use for VM provisioning. Ex: Vagrant, AWS, Docker, etc.
    • The provisioner to use. Ex: Puppet, Chef, Ansible.
    • A list of 1 or more operating to test against. Ex: Ubuntu 12.04, Ubuntu 14.04, CentOS 6.5, or even a custom VM image specified by URL.
    • A list of test suites to run.
  • A “test/integration/test-suite-name/test-suite-name.yml” file which contains the Ansible playbook to be applied.
  • One or more test files in “test/integration/test-suite-name/test-driver-name/”. For example, when using the BATS test-runner to run a test suite named “default”: “test/integration/default/bats/my-test.bats”.

Example Code

A full example of Test Kitchen w/Ansible is available via the delphix.package-caching-proxy Ansible role in Delphix’s GitHub repo. Here are direct links to the aforementioned files/directories:682240

Running Test Kitchen

Using Test Kitchen couldn’t be easier. From the directory that contains your “.kitchen.yml” file, just run “kitchen test” to automatically create your VMs, configure them, and run tests against them:

$ kitchen test
-----> Starting Kitchen (v1.4.1)
-----> Cleaning up any prior instances of 
-----> Destroying ...
 Finished destroying  (0m0.00s).
-----> Testing 
-----> Creating ...
 Bringing machine 'default' up with 'virtualbox' provider...
 ==> default: Importing base box 'opscode-ubuntu-14.04'...
==> default: Matching MAC address for NAT networking...
 ==> default: Setting the name of the VM: kitchen-ansible-package-caching-proxy-default-ubuntu-1404_default_1435180384440_80322
 ==> default: Clearing any previously set network interfaces...
 ==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
 ==> default: Forwarding ports...
 default: 22 => 2222 (adapter 1)
 ==> default: Booting VM...
 ==> default: Waiting for machine to boot. This may take a few minutes...

..  ...

-----> Running bats test suite
 ✓ Accessing the apt-cacher-ng vhost should load the configuration page for Apt-Cacher-NG
 ✓ Hitting the apt-cacher proxy on the proxy port should succeed
 ✓ The previous command that hit ftp.debian.org should have placed some files in the cache
 ✓ Accessing the devpi server on port 3141 should return a valid JSON response
 ✓ Accessing the devpi server via the nginx vhost should return a valid JSON response
 ✓ Downloading a Python package via our PyPI proxy should succeed
 ✓ We should still be able to install Python packages when the devpi contianer's backend is broken
 ✓ The vhost for the docker registry should be available
 ✓ The docker registry's /_ping url should return valid JSON
 ✓ The docker registry's /v1/_ping url should return valid JSON
 ✓ The front-end serer's root url should return http 204
 ✓ The front-end server's /_status location should return statistics from our web server
 ✓ Accessing http://www.google.com through our proxy should always return a cache miss
 ✓ Downloading a file that is not in the cache should result in a cache miss
 ✓ Downloading a file that is in the cache should result in a cache hit
 ✓ Setting the header 'X-Refresh: true' should result in a bypass of the cache
 ✓ Trying to purge when it's not in the cache should return 404
 ✓ Downloading the file again after purging from the cache should yield a cache miss
 ✓ The yum repo's vhost should return HTTP 200

 19 tests, 0 failures
 Finished verifying  (1m52.26s).
-----> Kitchen is finished. (1m52.49s)

And there you have it, one command to automate your entire VM testing workflow!

Next Steps

Giving individual developers on our team the ability to quickly run a suite of automated tests is a big win, but that’s only the first step. The workflow we’re planning is to have Jenkins also run these automated Ansible tests every time someone pushes to our git repo. If those tests succeed we can automatically trigger a run of Ansible against our production inventory. If, on the other hand, the Jenkins job which runs the tests is failing (red), we can use that to prevent Ansible from running against our production inventory. This would be a big win for validating infrastructure changes before pushing them to production.

ansible_logo_black_square

Advertisements

Ansible vs Puppet – An Overview of the Solutions

This is part 1/2 in a series. For part #2 see: Ansible vs Puppet – Hands-On with Ansible.

Having recently joined Delphix in a DevOps role, I was tasked with increasing the use of a configuration management tool within the R&D infrastructure. Having used Puppet for the past 3 years at VMware and Virtual Instruments I was inclined to deploy another Puppet-based infrastructure at Delphix, but before doing so I thought I’d take the time to research the new competitors in this landscape.

Opinions From Colleagues

I started by reaching out to three former colleagues and asking for their experiences with alternatives to Puppet, keeping in mind that two of the three are seasoned Chef experts. Rather than giving me a blanket recommendation, they responded with questions of their own:

  • How does the application stack look? Is is a typical web server, app, and db stack or more complex?
  • Are you going to be running the nodes in-house, cloud, or hybrid? What type of hypervisors are involved?
  • What is the future growth? (ie. number of nodes/environments)
  • How much in-depth will the eng team be involved in writing recipes, manifests, or playbooks?

After describing Delphix’s infrastructure and use-cases (in-house VMware; not a SaaS company/product but there are some services living in AWS; less than 100 nodes; I expect the Engineering team to be involved in writing manifests/cookbooks), I received the following recommendations:

Colleague #1: “Each CM tool will have its learning curve but I believe the decision will come down to what will the engineers adapt to the easiest. I would tend to lean towards Ansible for the mere fact thats it’s the easiest to implement. There are no agents to be installed and works well with vSphere/Packer. You will most likely have the engineers better off on it better since they know Python.”

Colleague #2: “I would say that if you don’t have a Puppet champion (someone that knows it well and is pushing to have it running) it is probably not worth for this. Chef would be a good solution but it has a serious learning curve and from your details it is not worth either. I would go with something simple (at least in this phase); I think Ansible would be a good fit for this stage. Maybe even with some Docker here or there ;). There will be no state or complicated cluster configs, but you seem to not need that. You don’t have to install any agent and just need SSH.“

The third colleague was also in agreement that I should take a good look at Ansible before starting with deployment of Puppet.

Researching Ansible on My Own

Having gotten similar recommendations from 3/3 of my former colleagues, I spent some time looking into Ansible. Here are some major differences between Ansible & Puppet that I gathered from my research:

  • Server Nodes
    • Puppet infrastructure generally contains 1 (or more) “puppetmaster” servers, along with a special agent package installed on each client node. (Surprisingly, the Puppetization of the puppetmaster server itself is an issue that does not have a well-defined solution)
    • Ansible has neither a special master server, nor special agent executables to install. The executor can be any machine with a list (inventory) of the nodes to contact, the Ansible playbooks, and the proper SSH keys/credentials in order to connect to the nodes.
  • Push vs Pull
    • Puppet nodes have special client software and periodically check into a puppet master server to “pull” resource definitions.
    • Ansible follows a “push” workflow. The machine where Ansible runs from SSH’s into the client machines and uses SSH to copy files, remotely install packages, etc. The client machine VM requires no special setup outside of a working installation of Python 2.5+.
  • Resources & Ordering
    • Puppet: Resources defined in a Puppet manifest are not applied in order of their appearance (ex: top->bottom) which is confusing for people who come from conventional programming languages (C, Java, etc). Instead resources are applied randomly, unless explicit resource ordering is used. Ex: “before”, ”require”, or chaining arrows.
    • Ansible: The playbooks are applied top-to-bottom, as they appear in the file. This is more intuitive for developers coming from other languages. An example playbook that can be read top-down: https://gist.github.com/phips/aa1b6df697b8124f1338
  • Resource Dependency Graphs
    • Internally, Puppet internally creates a directed graph of all of the resources to be defined in a system along with the order they should be applied in. This is a robust way of representing the resources to be applied and Puppet can even generate a graph file so that one can visualize everything that Puppet manages. On the down side building this graph is susceptible to “duplicate resource definition” errors (ex: multiple definitions of a given package, user, file, etc). Also, conflicting rules from a large collection of 3rdparty modules can lead to circular dependencies.
    • Since Ansible is basically a thin-wrapper for executing commands over SSH, there is no resource dependency graph built internally. One could view this as a weakness as compared with Puppet’s design but it also means that these “duplicate resource” errors are completely avoided. The simpler design lends itself to new users understanding the flow of the playbook more easily.
  • Batteries Included vs DIY
  • Language Extensibility
  • Syntax
  • Template Language
    • Puppet templates are based upon Ruby’s ERB.
    • Ansible templates are based upon Jinja2, which is a superset of Django’s templating language. Most R&D orgs will have more experience with Django.
  • DevOps Tool Support

Complexity & Learning Curve

I wanted to call this out even though it’s already been mentioned several times above. Throughout my conversations with my colleagues and in my research, it seemed that Ansible was a winner in terms of ease of adoption. In terms of client/server setup, resource ordering, “batteries included”, Python vs Ruby, and Jinja vs ERB, I got the impression that I’d have an easier time getting teammates in my R&D org to get a working understanding of Ansible.

Supporting this sentiment was a post I found about the Taxi startup Lyft abandoning Puppet because the dev team had difficulty learning Puppet. From “Moving Away from Puppet”:

“[The Puppet code base] was large, unwieldy and complex, especially for our core application. Our DevOps team was getting accustomed to the Puppet infrastructure; however, Lyft is strongly rooted in the concept of ‘If you build it you run it’. The DevOps team felt that the Puppet infrastructure was too difficult to pick up quickly and would be impossible to introduce to our developers as the tool they’d use to manage their own services.”

Getting Hands-On

Having done my research on Puppet vs Ansible, I was now ready to dive in and implement some sample projects. How did my experience with Ansible turn out? Read on in Part #2 of this series: Ansible vs Puppet – Hands-On with Ansible.